
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 8, August 2024

61

Application Monitoring using Prometheus and

Grafana
[1] Abhijeet Dhane, [2] Atharva Joshi, [3] Chinmay Borgaonkar, [4] Manas Deshpande, [5] Prof.Pravin Patil

[1] [2] [3] [4] [5] Department of Computer Engineering Pune Institute of Computer Technology, Pune 411043, India

Corresponding Author Email: [1] dhaneabhijeet30@gmail.com, [2] atharvaj06@gmail.com, [3] cpborgaonkar@gmail.com,
[4] manasdeshpande4902@gmail.com, [5] prpatil@pict.edu@gmail.com

Abstract— In today’s fast-placed digital world, ensuring the smooth operation of critical applications has become more impor- tant

than ever before. With increase in user expectations and ever- increasing competition, even minor downtime or performance issues can

lead to significant losses in revenue, reputation and customer trust. To prevent such outcomes, organizations must proactively monitor

their applications and detect potential issues before they impact users. Application monitoring involves con- tinuously tracking various

metrics associated with application’s performance and availability. Traditional monitoring approaches mainly include relying on

manually checking the system and periodic reporting which can be time consuming, error-prone and reactive. In contrast, modern

monitoring tools leverage au- tomation, machine learning, and real-time analytics to enable faster detection, diagnosis, and resolution of

issues. Prometheus and Grafana are two popular open-source tools that have gained widespread adoption in recent years for application

monitoring purposes. Prometheus is a powerful metric collection and query engine that enables organizations to capture granular data

about application behavior and infrastructure health. Grafana, on the other hand, is a flexible visualization platform that allows users to

create custom dashboards, alerts, and reports based on Prometheus (and other) data sources.

Index Terms— Prometheus, Grafana, application monitoring, time series database, visualization tool.

I. INTRODUCTION

An emerging paradigm in enterprise computing is cloud

computing. Cloud computing platforms exchange large

amounts of data storage, software, and infrastructure to create

a sizable resource pool from which customers can draw

information services, storage capacity, and processing power

as needed.It is necessary to keep an eye on your servers’

resources, performance, and problems in addition to the ap-

plications they support. Also these modern applications are

complex and constantly evolving, making continuous

monitor- ing is essential for efficient operation.Traditional

monitoring solutions often rely on heavyweight infrastructure

and are difficult to scale.Applications nowadays are

becoming more dispersed, dynamic, and complicated. This

makes it challeng- ing to follow them. Among the difficulties

in keeping an eye on contemporary applications are:

• Containers: Applications that are containerized can be

dynamically scaled up or down. Metric collection and

analysis from containerized applications may become

challenging as a result.

• Cloud-native apps: These programs are frequently set

up across several cloud environments. Because of this,

it could be challenging to obtain a complete picture of

the functionality and state of cloud-native apps.

• Microservices: Applications built using microservices

are made up of numerous tiny, independent services.

Because of this, it could be challenging to monitor

dependencies between services and find the source of

issues.

II. BACKGROUND AND RELATED WORKS

In the realm of extreme-scale systems, monitoring and

managing these colossal infrastructures pose significant chal-

lenges for organizations. Despite the availability of numerous

monitoring platforms and analytic tools, the sheer volume

and complexity of data generated necessitate substantial

efforts from computational center staff or users to analyze

results comprehensively. The escalating rates of data

collection are stretching the limits of current monitoring

infrastructures, highlighting the critical need for careful

consideration and design of monitoring solutions in the

procurement of extreme- scale systems. Factors such as

scalability, high availability, automation, and the integration

of dashboards for stream- lined operations are emphasized to

ensure efficient monitoring and management, anticipating

issues and facilitating rapid response.

Efficient monitoring solutions for extreme-scale systems

must address several key design considerations. These

include scalability and high availability to accommodate the

growing demands of computational ecosystems, along with

automation to streamline data processing and service

orchestration while minimizing complexity for users.

Dashboards offering com- prehensive views of system health

and performance metrics are essential for proactive issue

anticipation and rapid trou- bleshooting. Additionally,

actionable insights and analytics, coupled with the ability to

customize monitoring solutions to suit specific organizational

needs, are crucial for effective management of hybrid

computational deployments across both on-site and cloud

environments.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 8, August 2024

62

A. Existing Solutions and Technologies

Servers were previously observed with the use of the ana-

lytics repository Cloudwatch[3]. One-day monitoring

periods,

a monthly cap of ten alarms, and a maximum of five

actions per alarm were among Cloudwatch’s limitations.

Moreover, it was not able to export alerting warning data for

further research. The user interface (UI) was disorganized

because there were many screens to navigate through. The

reason it couldn’t keep an eye on servers was that it didn’t

provide any recommendations.

In the study, machine learning is suggested as a method of

server monitoring [4]. To classify the server status as healthy

or sick, it uses a revolutionary K Nearest Neighbor (KNN)

machine learning algorithm based on some physical variables

as system memory, RAM, and swap tool. The model is

additionally trained using a training dataset. For analyzing

the results as a bar graph, Nvd3.js is utilized.

While traditional systems are useful for managers, users,

and system administrators because they can provide mean-

ingful performance statistics via the command line, they

don’t provide a thorough visualisation of system resource

usage trends, according to the study ”A Resource Utilization

Analytics Platform Using Grafana and Telegraf for the Savio

Supercluster”[7]. Using Slurm to obtain job states, Telegraf

to gather CPU metrics, InfluxDB to store time series data,

and Grafana to visualize and obtain insights into system

resource usage and alerts via widely used industryaccepted

communi- cation channels, the authors proposed a method for

gathering system state and visualizing it. The technique

offered centers on the effective elimination of system task

data, in combination with additional performance metrics and

associated perceptive presentation.

A comprehensive analysis of the effects of utilizing

Prometheus and Grafana for HPC systems with CPUs and

GPUs in particular has been published in ”Jobstats: A Slurm-

Compatible Job Monitoring Platform for CPU and GPU

Clusters.”[8] The complexity of HPC clusters increases with

file system slowdowns, CPU overloads, and job failure rates

becoming more difficult to handle in these systems.In order

to monitor CPU and memory consumption, GPU job

statistics, and Node Specific Statistics, four Prometheus

exporters are further installed on the Jobstats job monitoring

platform, which is then viewed using Grafana. Slurm stores

job statistics on an individual basis. The Jobstats monitoring

platform, the tools created on it, and the speed at which the

time series database processes data are the main contributions

of this work.

III. METHODOLOGY

A. Introduction to Prometheus

Prometheus is an open source toolkit for system

monitoring and awakening that is utilized as free software for

event mon- itoring and waking. Either directly or through a

central drive gateway for temporary work, Prometheus

extracts criteria from instrumented jobs. It keeps all of the

scraped samples locally and applies rules to this data in order

to generate warnings or total and record new time series from

the data.Prometheus’ primary characteristics are

• A multidimensional data model that uses key/value

pairs and metrics names to link time series data.

• One versatile query language to take advantage of this

dimension is PromQL.

• Individual nodes are independent; there is no

dependency on a distributed storage..

• A pull model over HTTP is used to collect time series

B. Introduction to Grafana

Users can view their data through charts and graphs that

are combined into a single dashboard (or multiple

dashboards!) for simpler interpretation and comprehension

using Grafana, an open source interactive data visualization

platform created by Grafana Labs. Grafana was founded on

the ideas of openness and the notion that information ought to

be accessible to everyone in the company, not just a select

few. As a result, teams are encouraged to be more

transparent, creative, and cooperative by creating an

environment where data is easily accessible and utilized by

anyone who needs it.

Key properties:

• Dashboards: use graphs, heatmaps, geomaps,

histograms, and other visualizations to see your data

however you’d like.

• Plug-ins: Connect to current data sources with

dashboard plug-ins to render your data in real-time on

an intuitive API; no data migration is necessary.

Additionally, plugins for data sources can be made to

retrieve metrics from any custom API.

• Alerts: All of your alerts can be created, consolidated,

and managed from a single user interface.

• Transformations: Rename, condense, merge, compute

across queries and data sources.

• Remarks: Utilize rich events from various data sources

to add annotations to graphs.

• Panel Editor: A standardized user interface for setting

up and personalizing your panels.

C. System Architecture

Prometheus has several components which help in the

overall monitoring of your application. These components of

the architecture are:

• Prometheus Server

• Push Gateway

• Alert Manager

• Prometheus Targets

• Client Libraries

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 8, August 2024

63

• Prometheus Exporters

• Service Discovery

First, Prometheus scrapes data using the Prometheus

server and finds targets using the Service discovery. After

that, the scraped data is sent to the dashboard and processed

using PromQL and sends alerts to the alert manager, who will

send notifications to the user.

1) Prometheus Server

The Prometheus server functions as the ”brain” of web or

mobile applications, collecting multi-dimensional data in

time series and analyzing and aggregating it. This

Fig. 1. Architecture

process, known as scraping, involves accessing metrics via

metric names or optional key-value pairs, often distinguished

by labels. Time series data is collected at successive or fixed

intervals, enabling analysis and filtering for further insights.

The server automatically pulls metrics from targets,

eliminating the need for manual pushing of metrics for

analysis. This simplifies the client’s task as they only need to

expose metrics through an HTTP endpoint with ”/metrics,”

returning the complete set of metrics.

2) Prometheus PushGateway

The Prometheus server alone would not scrape all kinds of

metrics; some require extra mechanics. Prometheus Gateway

is the intermediary source used for metrics from those jobs

which can not be scraped by usual methods. The push

gateway always exposes the data collected to the Prometheus

for any reason, and we can not delete that information

manually from the Gateway’s API. When multiple instances

of a job use an instance la- bel for differentiating their metrics

in the push gateway, the metrics remain in the push gateway

even after the original entity deletes. It happens because the

lifecycle of an instance in the push gateway is different from

the lifecycle of the actual process. On the other hand, in

Prometheus classical pull, metrics also delete when the

original instance gets deleted.

3) Alertmanager

Alertmanager is responsible for managing the alerts sent

by the clients. It checks for supplication, groups the signals,

and routes them to the correct application like email,

Pagerduty, Opsgenie, etc. It also checks for when it should

keep alerts off and when not. You can do various things with

Alerts received from a client (Prometheus Server) to the

Alertmanager. You can group similar types of notifications

that prevent you from seeing similar notifications

repetitively. You can mute notifications as well. In the alert

manager, you can configure that all alerts related to the same

type of instance are compiled in a single alert and then sent to

the alert manager.

4) Prometheus Targets

Prometheus targets represent how Prometheus ex- tracts

metrics from a different resource. In this case, Prometheus

collects metrics directly. But in some in- stances, like in

unexposed services, Prometheus has to use exporters.

Exporters are some programs that extract data from a service

and then convert them into Prometheus formats. In the

multi-target export pattern, the metrics export via a network.

They do not have to run on the parent machines of the

metrics, and they can query from multiple targets. Blackbox

and SNMP exporters use multi-target exporter patterns.

5) Client Libraries

As we all know, Prometheus collects data in time- series

formats that are multi-dimensional. So clients are always

asked to send in this form specifically. Prometheus provides

various client libraries, some are official, and some are

unofficial. If you can control the source code, client libraries

provide the client- specific instrumentation and metrics

collection. The client library sends the current state of all

tracked metrics to the server whenever Prometheus scrapes

your instances’ HTTP endpoint. Client libraries for

instrumenting your own code are available in Go, Java/JVM,

C/.Net, Python, Ruby, Node.js, Haskell, Erlang, and Rust,

among other prominent languages and runtimes. Software

like Kubernetes and Docker already include Prometheus

client libraries. There are hundreds of integrations available

for third-party software that offers metrics in a

non-Prometheus format. HAProxy, MySQL, PostgreSQL,

Redis, JMX, SNMP, Consul, and Kafka are examples of

exporters.

6) Prometheus Exporters

As mentioned above, in most cases, metrics are self-

exposed by the service. In such cases, Prometheus au-

tomatically collects metrics. In other cases, Prometheus

needs to scrape metrics. Exporters are third-party tools that

help scrape metrics when it is not feasible to extract metrics

directly. Some exporters are official, while others are not

officially declared in the Prometheus Github organization.

Prometheus exporters can go into various categories such as

database exporters, hardware related, issue trackers, storage,

HTTP, APIs, logging, miscel- laneous alert managers, and

other official Prometheus exporters.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 8, August 2024

64

7) Service Discovery

In the Prometheus Targets section, we discussed using

static-config files to configure the dependencies man- ually.

This process is ok when you have simple uses with the config

file, but what if you have to do this in a large amount?

Especially when some instances are added or removed every

single minute? This is where service discovery comes into

play. Service discovery helps in providing Prometheus the

information of what to escape in whichever database you

want. Prometheus’ common

service discovery resources are Consul, Amazon’s EC2,

and Kubernetes out of the box.

D. Data Collection Methods

1) Exporters and Agents:

• Exporters: Exporters are small agents or libraries that

expose metrics from various systems and ser- vices in

a format that Prometheus can scrape.

• Types of Exporters: Prometheus provides a range of

officially supported exporters for popular systems

such as Node.js, Docker, MySQL, PostgreSQL,

Redis, and more.

• Custom Exporters: Users can also write custom ex-

porters using Prometheus client libraries to monitor

specific applications or services.

• Usage: Exporters are deployed alongside the appli-

cations or services they monitor, exposing metrics via

HTTP endpoints that Prometheus scrapes at regular

intervals.

2) Instrumenting Servers:

• Instrumentation Libraries: Prometheus provides client

libraries for various programming languages (e.g., Go,

Java, Python, Ruby, etc.) that allow devel- opers to

instrument their applications with custom metrics.

• Metrics Exposition: Instrumented applications ex-

pose metrics via HTTP endpoints in a format that

Prometheus can scrape.

• Types of Metrics: Metrics can include application-

specific metrics such as request latency, error rates,

throughput, resource utilization, and more.

• Customization: Developers can customize the in-

strumentation to expose metrics that are relevant to

their application’s performance and behavior.

E. Data Processing and Visualization

1) Querying With Promql

Prometheus Query Language (PromQL) is a powerful

query language used to retrieve and analyze collected

metrics. It enables users to perform various operations on

time-series data to gain insights into system behavior and

performance. Some common use cases of PromQL include:

• Calculating Aggregates: PromQL allows users to cal-

culate aggregates such as averages, sums, counts, and

percentiles over a specified time range. For example,

users can calculate the average response time of a

Node.js application over the past hour or the 90th

percentile of CPU usage on Windows servers.

• Filtering Metrics: PromQL supports filtering metrics

based on label values, enabling users to focus on

specific subsets of data. For instance, users can filter

metrics related to a particular service, instance, or job

to analyze performance trends or identify outliers.

• Mathematical Operations: PromQL provides various

mathematical operators such as addition, subtraction,

• multiplication, and division, allowing users to

perform arithmetic operations on metrics. This

enables users to calculate derived metrics or compute

ratios between dif- ferent metrics.

• Temporal Functions: PromQL includes temporal

func- tions such as rate, increase, and delta, which

allow users to calculate rates of change or differences

between consecutive data points. These functions are

useful for monitoring trends and detecting anomalies

in metric data.

2) Grafana Dashboard Design

Grafana provides a user-friendly interface for designing

cus- tom dashboards to visualize Prometheus metrics.

Dashboards in Grafana can be tailored to display real-time

and historical data from multiple data sources, including

Node.js applica- tions, Docker containers, MySQL databases,

and Windows servers. Key features of Grafana dashboard

design include:

• Data Source Integration: Grafana supports integration

with various data sources, including Prometheus, In-

fluxDB, Graphite, Elasticsearch, and more. Users can

configure data sources in Grafana and query metrics

from multiple sources within the same dashboard.

• Visualization Options: Grafana offers a wide range of

visualization options, including line graphs, bar

charts, heatmaps, gauges, and tables. Users can

choose the most suitable visualization type based on

the nature of the data and the insights they want to

convey.

• Panel Customization: Grafana allows users to

customize individual panels within a dashboard by

adjusting settings such as colors, axis labels, legend

placement, and data aggregation functions. This

flexibility enables users to create visually appealing

and informative dashboards tailored to their specific

monitoring needs.

• Dashboard Templating: Grafana supports dashboard

tem- plating, allowing users to create dynamic

dashboards that adapt to changes in data sources or

query parameters. Templating enables users to create

reusable dashboard templates and dynamically filter

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 8, August 2024

65

data based on user input or predefined variables.

• Annotations and Alerts: Grafana allows users to add

an- notations and alerts to dashboards to highlight

important events or conditions. Annotations can be

used to mark downtime periods, deployment events,

or performance incidents, while alerts can be

configured to notify users when predefined thresholds

are exceeded.

F. Alerting Mechanisms

3) Alertmanager Configuration

Alertmanager is a component of Prometheus used for han-

dling alerts generated by the Prometheus server. It allows

users to define alerting rules and configure notification

channels for alert delivery. Key features of Alertmanager

configuration include:

• Alerting Rules: Alertmanager allows users to define

alerting rules based on predefined thresholds or using

• complex expressions involving multiple metrics.

Users can specify conditions under which alerts

should be triggered, such as when the response time of

a Node.js application exceeds a certain threshold or

when CPU utilization of Docker containers reaches

critical levels.

• Notification Channels: Alertmanager supports

various notification channels such as email, Slack,

PagerDuty, and webhook integrations. Users can

configure multiple notification channels and specify

different notification settings for each channel.

• Silence and Inhibition: Alertmanager provides

features for silencing and inhibiting alerts to prevent

unneces- sary notifications during maintenance

windows or when certain conditions are met. Users

can silence alerts for specific time periods or inhibit

alerts based on other alert states or labels.

4) Defining Alert Rules

Alert rules specify conditions under which alerts should be

triggered by the Prometheus server. Users can define alerting

rules using Prometheus’s expression language and specify

thresholds or conditions based on metrics collected by

Prometheus. Some common examples of alert rules include:

• Node.js Application Response Time: Alert rule to

notify administrators when the response time of a

Node.js ap- plication exceeds a certain threshold,

indicating degraded performance or potential issues

with the application.

• Docker Container CPU Utilization: Alert rule to

trigger alerts when CPU utilization of Docker

containers reaches critical levels, indicating resource

contention or overload on the host system.

• MySQL Query Latency: Alert rule to alert adminis-

trators when MySQL query latency exceeds

acceptable limits, indicating potential database

performance issues or query optimization

opportunities.

• Windows Server Disk Space: Alert rule to notify

admin- istrators when disk space on Windows servers

is running low, indicating a potential risk of disk space

exhaustion and service disruption.

By defining alert rules and configuring notification

channels in Alertmanager, users can proactively monitor

their infras- tructure and respond to potential issues in a

timely manner, ensuring the reliability and availability of

their systems.

IV. IMPLEMENTATION

A. Setting up Prometheus and Grafana

To set up Prometheus and Grafana for server monitoring,

its essential that the server to be monitored and the

monitoring system are within the same network. Before

getting started with prometheus, application to be monitored

needs to be integrated with relevant metrics, choice of which

needs to be brainstormed thoroughly. The application must

be configured to expose the intended metrics to be scraped by

Prometheus at a suitable endpoint. As we operated a Node.js

server, we utilized the Prometheus client library for

JavaScript, known as prom-client, to create and export

custom metrics. This library

Fig. 2. Sample code of prometheus.yml file

facilitated access to a registry, where all metrics were reg-

istered and prepared for export. Selecting appropriate metric

exporters for Prometheus is pivotal, as they form the

backbone of our observability strategy alongside Grafana.

Choice of metrics and relevant exporters is left to the users

due to its dependence on the nature of application and OS of

the server that needs to be monitored. We employed various

exporters to cater to different metrics. For instance, we

utilized Prometheus counter metrics to export the number of

payments, and Custom Prometheus gauge metrics to capture

payment success rates and MySQL metrics. Additionally, we

exported HTTP metrics, as well as CPU and memory

utilization metrics, which we identified as relevant for our

server. Once the application is configured to export metrics,

the next step involves setting up Prometheus, Alertmanager,

and Grafana to monitor our server effectively.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 8, August 2024

66

B. Prometheus

Prometheus is configured through a YAML file, typically

named prometheus.yml. This file includes various sections

such as global configuration, alerting rules, and scrape

configs. It also requires a rules-file generally (rules.yml)

where all the alerting rules are expressed in promQL, which

are evaluated periodically to check system health and trigger

alerts.

Fig 2 depicts the sample code of prometheus.yml file.

Global section defines global configuration options that

apply to the entire Prometheus instance. Like scrape-interval

sets the interval at which Prometheus will scrape (collect)

metrics from the configured targets and evaluation-interval

determines how often Prometheus will evaluate rules and

update the alerting status. Scrape-config defines the

configurations for scraping metrics from specific targets.

Like in the above configuration, Prometheus scrapes metrics

from a Node Exporter on local- host:9100 and is configured

to send alerts to Alertmanager running on localhost:9093.

Alerting defines configurations related to alerting.

Alertmanager specifies the Alertmanager instances that

Prometheus will send alerts to. Static-config allows statically

configuring the targets for Alertmanager in- stances. Like in

the code depicted in Fig 2, target is set to localhost on port

9093, indicating that the alerts will be sent to the

Alertmanager running on this address.

Fig. 3. Sample code of alertmanager.yml file

C. Alertmanager

Alertmanager provides a yaml configuration file which

includes (global, routes, receiver, etc) configuration settings.

Fig 3 depicts the sample code of alertmanager.yml file.

Global section defines global configuration options that

apply to the entire Alertmanager instance. Resolve-timeout

sets the timeout duration for resolving alerts. If an alert

remains active for longer than this duration, it will be

considered resolved. Route specifies the routing

configuration for incoming alerts. group-by defines how

alerts should be grouped. Alerts with the same name and

severity will be grouped together. group- wait determines

how long Alertmanager should wait before grouping alerts

together. group-interval specifies the interval at which

Alertmanager should group. repeat-interval sets the interval

at which Alertmanager should resend notifications for the

same alert. Receivers in alert manager is a configuration

entity that defines how alerts are routed and where

notifications are sent when triggered by an alerting system.

Each receiver has a unique name and is associated with

specific notification settings, such as email, Slack,

PagerDuty, or custom webhook endpoints, etc. Alerts can be

routed to different receivers based on various criteria, such as

severity, alert name, or specific conditions defined in the

routing configuration. Code depicted in Fig 3 explains how to

configure route and receiver for conveying alerts through

emails. SMTP server and port used for sending emails are

dictated by smarthost configuration. Auth-username specifies

the username used for authenticating with the SMTP server.

Its typically the same as the email address. Auth-password

would normally contain the pass- word associated with the

auth-username for authentication. Its securely configured,

typically encrypted or stored in a secure manner.

Auth-identity specifies the identity used for authentication,

which is often the same as the auth-username.

D. Grafana

For creating a dashboard, firstly we need to specify the

appropriate datasource (Prometheus Data source). Then we

need to run a prometheus query consisting of either raw

metrics (exported metrics) or performing operations on these

raw metrics of which results can be visualized in (time

Fig. 4. Alert manager dashboard indicating that an alert has

been fired.

Fig. 5. Grafana dashboard creation UI

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 8, August 2024

67

series graphs, bar graph, histogram, stats, etc). Further

grafana continues to periodically refresh its dashboard to

visualize the updated metrics. There are more customization

options available for creating dashboards which can be

explored.

V. RESULTS AND DISCUSSION

In this section, we present the results of our application

monitoring using Prometheus and Grafana. We discuss the

performance evaluation, integration challenges, complexity,

and alerting and notification aspects encountered during the

implementation and usage of these tools.

A. Performance Evaluation

Prometheus allowed us to monitor various key metrics

essential for understanding the health and performance of our

application. These metrics included:

• Custom Requests: Tracking the total number of

custom requests served by the application, providing

insights into user interaction and system usage

patterns.

• Payment Success Rate: Monitoring the rate of

successful payments processed by our payment

gateway, crucial for assessing the reliability and

efficiency of our payment processing system.

• MySQL Performance Metrics: Observing metrics

such as MySQL connections, query execution time,

bytes sent

Fig. 6. Grafana metrics dashboard

and received, and queries per second, helping us optimize

database performance and ensure smooth operation.

• HTTP Request Durations: Analyzing HTTP request

du- rations via histograms for different status codes

and methods, aiding in identifying performance

bottlenecks and improving response times.

• Node.js Event Loop Lag: Measuring the lag of the

event loop in Node.js, indicating the efficiency of

event-driven processing and potential performance

issues.

Visualization of metrics as seen in Fig 6 and prompt

alerting after implementing Prometheus and Grafana allowed

us to gain insights into the impact of monitoring on our

application’s performance. We observed improved visibility

into system behavior, timely detection of anomalies, and

enhanced re- source utilization management. Monitoring

resource utilization metrics such as CPU usage, memory

usage, and file descriptors helped us understand the impact of

monitoring on system resources. This enabled us to optimize

resource allocation and identify potential bottlenecks

proactively.

B. Case Studies

• Amadeus IT Group:

– Industry: Travel Technology

– Use Case: Amadeus IT Group adopted Prometheus

and Grafana by spinning up four clusters

on-premises and deploying Prometheus on top of

them. The company manually added these four data

sources in Grafana for visualization. This

implementation allowed Amadeus IT Group to

monitor its infras- tructure effectively and gain

insights into system performance and resource

utilization.

• Digital Ocean:

– Industry: Cloud Services

– Use Case: Digital Ocean found Grafana to be a

natural fit for its monitoring needs. With close in-

tegration with Prometheus, new dashboards could

be built quickly. This integration enabled support

and platform teams to easily access visual metrics

for any server in the fleet. The intuitive UI, powerful

query editor, and beautiful visualizations of Grafana

empowered teams throughout the company to build

and share dashboards, fostering collaboration and

facilitating data-driven decision-making.

• JP Morgan Chase and Co.:

– Industry: Financial Services

– Use Case: JP Morgan Chase and Co. utilized

Prometheus and Grafana to monitor their technical

landscape. By leveraging trade volumes, synthetic

transactions, and alerts created by SRE precepts,

they built a comprehensive monitoring tool using

Grafana. This solution enabled them to record trends

and proactively highlight issues, ensuring the

stability and reliability of their technical

infrastructure.

C. Challenges Encountered

• Network Setup and Configuration: One of the

significant challenges encountered during integration

was setting up the network and configuring IP

addresses for Prometheus and Grafana instances.

Ensuring proper communication and connectivity

between different components required careful

planning and configuration. However, thorough

documentation and community support helped in

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 8, August 2024

68

over- coming these challenges.

• Complexity: Configuring and maintaining

Prometheus and Grafana setups required a deep

understanding of metrics collection, storage,

visualization, and alerting. Managing complex

configurations, especially in large- scale deployments,

demanded meticulous attention to detail and

continuous optimization efforts.

• Alerting and Notification: Configuring SMTP settings

for email alerts posed challenges, especially in

environments where dedicated email servers were not

readily available. To address this, we leveraged

Google’s SMTP servers, which are accessible for

developers and provide a re- liable email delivery

mechanism. However, configuring SMTP settings and

ensuring seamless integration with Prometheus Alert

Manager required careful coordination to ensure

proper authentication and security measures were in

place.

D. Lessons Learned

• Proper planning and setup: Effective monitoring with

Prometheus and Grafana requires careful planning and

setup. We learned the importance of defining clear

moni- toring objectives, selecting relevant metrics to

track, and establishing robust data collection

mechanisms. Addi- tionally, configuring Prometheus

and Grafana setups to align with specific business

requirements and infrastruc- ture complexities proved

crucial for deriving actionable insights from

monitoring data.

• Continuous Optimization: Continuous optimization of

monitoring configurations is essential for maintaining

the effectiveness of Prometheus and Grafana setups

over time. We discovered the value of regularly

reviewing and fine-tuning monitoring configurations

to adapt to changing business needs, evolving system

architectures, and shifting performance requirements.

By optimizing alerting thresholds and dashboard

layouts we ensured that the monitoring systems

remained aligned with operational goals and provided

actionable insights.

VI. CONCLUSION AND FUTURE SCOPE

The adoption of Prometheus and Grafana for application

monitoring represents a significant advancement in the field

of IT operations and DevOps practices. Throughout this re-

search paper, we have explored the capabilities, features, and

real-world applications of these powerful monitoring tools.

Case studies show how Amadeus IT Group, Digital Ocean,

and JP Morgan Chase and Co., among other top compa- nies,

successfully used Prometheus and Grafana to monitor their

infrastructure, increase operational effectiveness, and

improve service reliability. With its flexible query language,

rapid data collection systems, and strong time-series

database, Prometheus gives businesses the capacity to

monitor a wide range of metrics across a variety of

infrastructures. Because of its integrated integration with

Grafana, a flexible dashboarding and visualization platform,

users can easily track key perfor- mance metrics, create

intelligent visualizations, and identify abnormalities.

Looking ahead, the future of application monitoring with

Prometheus and Grafana holds immense promise. With on-

going advancements in cloud-native technologies, machine

learning, and automation, we anticipate further enhancements

in scalability, predictive analytics, and self-healing

capabilities. As organizations continue to embrace digital

transformation and strive for operational excellence,

Prometheus and Grafana will remain indispensable tools in

their arsenal for monitoring and managing complex IT

environments effectively.

In conclusion, Prometheus and Grafana give businesses

the ability to continuously monitor, assess, and improve their

infrastructure and applications, helping them to remain ahead

of the curve in a dynamic and fiercely competitive digital

environment.

REFERENCES

[1] L. Chen, M. Xian and J. Liu, ”Monitoring System of

OpenStack Cloud Platform Based on Prometheus,” 2020

International Conference on Computer Vision, Image and

Deep Learning (CVIDL), Chongqing, China, 2020, pp.

206-209, doi: 10.1109/CVIDL51233.2020.0-100.

[2] Rawoof F. M., Tajammul M., “ A Survey on Remote

On-Premise Server Monitoring”, 2022 Journal of Emerging

Technologies and Innovative Research (JETIR) Volume 9,

Issue 2.

[3] Kumar A. K., Vinutha B. S., Vinayaditya B.V., “ REAL TIME

MONI- TORING OF SERVERS WITH PROMETHEUS

AND GRAFANA FOR HIGH AVAILABILITY ”, Apr 2019,

International Research Journal of Engineering and

Technology (IRJET).

[4] Bose S., Rakesh K.R., “Server status Monitoring using

Advanced Machine Learning Algorithms”, 6 June 2020,

International Journal of Creative Research Thoghts(IJCRT)

Volume 8.

[5] O. Mart, C. Negru, F. Pop and A. Castiglione, ”Observability

in Kuber- netes Cluster: Automatic Anomalies Detection

using Prometheus,” 2020 IEEE 22nd International Conference

on High Performance Computing and Communications; IEEE

18th International Conference on Smart City; IEEE 6th

International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), Yanuca Island, Cuvu, Fiji, 2020, pp.

565-570, doi: 10.1109/HPCC-SmartCity-DSS50907.2020.

00071.

[6] N. Sukhija and E. Bautista, ”Towards a Framework for

Monitor- ing and Analyzing High Performance Computing

Environments Us- ing Kubernetes and Prometheus,” 2019

IEEE SmartWorld, Ubiq- uitous Intelligence & Computing,

Advanced & Trusted Comput- ing, Scalable Computing &

Communications, Cloud & Big Data Computing, Internet of

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 8, August 2024

69

People and Smart City Innovation (Smart- World/

SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK,

2019, pp. 257-262, doi: 10.1109/SmartWorld-UIC-ATC-

SCALCOM-IOP- SCI.2019.00087.

[7] Nicolas Chan. 2019. A Resource Utilization Analytics

Platform Using Grafana and Telegraf for the Savio

Supercluster. In Proceedings of the Practice and Experience in

Advanced Research Computing on Rise of the Machines

(learning) (PEARC ’19). Association for Computing

Machinery, New York, NY, USA, Article 31, 1–6.

[8] 1. Josko Plazonic, Jonathan Halverson, and Troy Comi. 2023.

Jobstats: A Slurm-Compatible Job Monitoring Platform for

CPU and GPU Clusters. In Practice and Experience in

Advanced Research Computing (PEARC ’23). Association

for Computing Machinery, New York, NY, USA, 102–108.

https://doi.org/10.1145/3569951.3604396

[9] Zhang Yu-Long, Cao Heng, Hu Jing-Feng, Wang Jin-Cheng,

“Design and implementation of remote monitoring system for

welding machine based on web”, 2018

[10] A. Kaushik, “Use of Open Source Technologies for Enterprise

Server Monitoring Using SNMP”, IJCSE, Vol. 2, No. 7, pp.

2246-2252, 2010.

[11] J. Swarna, C. S. Raja, D. Ravichandran, “Cloud Monitoring

Based on SNMP”, Journal of Theoretical and Applied

Information Technology, Vol. 40, No. 2, pp. 188-193, 2012.

[12] Andreas witting and Michael witting, Amazon web services in

actions, ISBN- 1617292885, 17/10/2015.

[13] G. Suciu, V. Suciu, R. Gheorghe, C. Dobre, F. Pop, and A.

Castiglione. “Analysis of Network Management and

Monoitoring Using Cloud Com- puting”, Computational

Intelligence and Intelligent Systems, Springer, pp. 343-352,

2016

[14] Ikram Hawramani, Cloud computing for complete beginners:

Building and scaling high performance web servers on the

amazon cloud.

[15] Chakraborty M, Kundan AP. Grafana. In: Monitoring

Cloud-Native Applications [Internet]. Berkeley, CA, Apress;

2021. [cited 15th August 2022] Available from: https://doi.

org/10.1007/978-1-4842-6888-96

